Scientists team up with industry partners to turn potato starch into batteries for electric vehicles

York, 19 April 2017. The Biorenewables Development Centre (BDC) is working with eight partners from across the EU to scale up a process for converting renewable plant-based resources into a building block for energy storage and chemical catalysis.

“Fundamentally, this project is about replacing a fossil resource, with a more sustainable, biorenewable alternative,” explains David Amantia, Principal Investigator for the project from Leitat, Spain. “What is exciting, is that by bringing together the nine partners, we are able to hone the technology from research level right through to a scaled-up production process for industrial testing.”

One of the technologies being trialled through this project is a highly-innovative process developed at the University of York. It uses starch or pectin, which can be sourced renewably from a wide variety of plants; for this project, the team are focusing on three sources: potato starch, alginic acid and fruit pectin.

“The first step in our conversion uses expansion technologies, then we freeze dry the material before converting it into a carbon material using a furnace. We are investigating using this as a catalyst for chemical processes and to make batteries for electric vehicles,” explains Duncan Macquarrie of the University of York’s Green Chemistry Centre of Excellence.

Over the course of the four-year project – funded by the EU’s Horizon2020 programme – the team will be trialling different methods for converting three bio-based starting materials into a porous carbon, including York’s process. They will then be adapting the resulting material for different uses, including: energy storage for electric vehicles and as a green catalyst for the chemicals industry.

“We are using the porosity offered by nature to engineer a stable material with controlled pores, like changing the hole sizes in a sponge. By manipulating these and studying how they interact with other materials, like metals, we can change how the material performs; ultimately improving its effectiveness for different uses.” explains Peter Hurst, Senior Technologist at the BDC.

Over the past year, the parameters and requirements for the end materials have been agreed. Now, the team at the BDC are taking the process from a lab scale of 100g, and scaling it up to develop a pilot line capable of producing up to 20kg/day of the material. This will provide enough sample material for the industry partners to test and analyse.

If successful, one of the project outcomes, will be a pilot-scale production plant for producing this material, based at the BDC in York, UK.

This research collaboration is funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 686163 as the “Porous4App” project. This material reflects the author’s view and the Commission is not responsible for any use that may be made of the information it contains. 

For further information please contact Juliet Burns, Communications and Marketing Manager:
juliet.burns@york.ac.uk or +44 (0)7795315013.

About the project:

 

 

Funded by the European Union’s Horizon2020 programme (Grant no. No 686163), the four-year project will refine and scale up the process technologies for developing a mesoporous carbonaceous material for various industrial applications. Nine partners from seven EU countries will be collaborating to bring this innovative and sustainable technology to market, creating new jobs and economic growth. The project partners are: Leitat (Spain), CNRS (France), University of York (UK), EMPA (Switzerland), Varta MicroInnovations (Austria), Meta Group (Italy), Singular Solutions (Netherlands), ICIQ (Spain), Ibercat (Spain), Johnson Matthey (UK) and the Biorenewables Development Centre (UK).  http://porous-4app.eu/

 

 

Posted in Uncategorized Tagged with: , ,

Leave a Reply

Your email address will not be published. Required fields are marked *

*

Work with us

Can we help you?

We've already developed over 350 projects for organisations large and small – will your business be one of them?

Get in touch
CLOSE
CLOSE